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Abstract 

Density-functional theory, previously used to describe phase equilibria in the -U-Mo 

alloys [A. Landa, P. Söderlind, P.E.A. Turchi, J. Nucl. Mater. 414 (2011) 132], is 

extended to study ground-state properties of the bcc-based ( ) X-Mo (X = Np, Pu, Am) 

solid solutions. We discuss how the heat of formation correlates with the charge transfer 

between the alloy components, and how magnetism influences the deviation from 

Vegard‟s law for the equilibrium atomic volume.  
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1. Introduction  

 In our previous papers [1, 2] we performed detailed ab initio studies of the 

fundamental thermodynamic properties of the body-centered-cubic (bcc) or -phase of 

the U-Zr and U-Mo systems that are candidates as metallic nuclear fuels for fast breeder 

reactors. We found that a significantly larger absolute value of the charge transfer from U 

atoms in the case of the -U-Mo alloys than in the case of the -U-Zr alloys causes the 

ponderable negative Madelung energy contribution to the heat of formation of the -U-

Mo alloys in comparison with one for the -U-Zr alloys [2]. This difference in the 

absolute value of the charge transfer from U atoms results in much higher constituent 

redistribution in -U-Zr than in -U-Mo fuels where a single -phase field exists and can 

be retained (quenched) as a metastable phase up to room temperature.  

 Although U-Zr and U-Mo alloys can be used as nuclear fuels, a fast reactor 

operation on a closed fuel cycle will, due to nuclear reactions, contain Pu [3, 4] as well as 

minor actinides (MA), Np, Am, and Cm [5-7]. Semi-empirical model calculations [8], 

supported by experimental observations, indicate that the excess enthalpy of solution of 

the -U-Zr phase controls the constituent redistribution process.  In our previous papers 

[1, 9-11] we performed detailed calculations of the heat of formation of bcc-based ( ) X-

Zr (X = U, Np, Pu, Am) solid solutions, which can be used for further analysis of the 

constituent redistribution in the central zone of -U-Zr nuclear fuels. We found that 

theoretical heats of formation of the -U-Zr, -Np-Zr, and -Pu-Zr alloys are in a good 

agreement with data derived from a CALPHAD assessment [12-14] of the experimental 

thermodynamics and phase diagram information for these systems, although we could not 
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perform a similar assessment in the case of the Am-Zr system due to the total lack of 

experimental thermodynamics data and absence of the phase diagram. 

 As was mentioned above, we undertook an ab initio study of the fundamental 

thermodynamic properties of -U-Mo alloys [2] while thermodynamic properties of U-

TRU-Mo alloys have not been modeled yet. Thus, in the present study we report results 

of ab initio calculations for bcc-based ( ) X-Mo (X = Np, Pu, Am) alloys. We believe 

that our results are essential because experimental data on these alloys are lacking and 

theoretical phase diagrams, available for Np-Mo [15], Pu-Mo [16], and Am-Mo [17] 

alloys, are based on the simple Brewer valence bond model [18] with no input from 

experimental data. Similar to the Am-Zr system, a lack of experimental thermodynamics 

data prevents us for performing a CALPHAD comparison for X-Mo (X = Np, Pu, Am) 

alloys. 

For our calculations we employ two complementary computational techniques: (i) 

the scalar-relativistic (SR) or fully relativistic (FR) exact muffin-tin orbital method 

(EMTO) and (ii) the full-potential linear muffin-tin orbital method (FPLMTO) that 

accounts for all relativistic effects. The SR-EMTO method was used in the case of U-Mo 

and Np-Mo alloys and FR-EMTO method for the Pu-Mo and Am-Mo alloys (previous 

studies [9, 19] revealed that relativistic effects are important for Pu- and Am-based 

alloys). Pertinent details of the computational methods are described in Section 2. Results 

of the density-functional calculations of the ground-state properties of the -U-Mo, -Np-

Mo, -Pu-Mo, and -Am-Mo solid solutions are presented in Section 3. We provide 

discussion in Section 4. Lastly, concluding remarks are presented in Section 5. 
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2. Computational details 

 The calculations we have referred to as EMTO are performed using the Green‟s-

function technique based on the improved screened Korringa-Kohn-Rostoker method, 

where the one-electron potential is represented by optimized overlapping muffin-tin 

(OOMT) potential spheres [20, 21]. Inside the potential spheres the potential is 

spherically symmetric, and it is constant between the spheres. The radius of the potential 

spheres, the spherical potential inside these spheres, and the constant value in the 

interstitial region are determined by minimizing (i) the deviation between the exact and 

overlapping potentials, and (ii) the errors caused by the overlap between the spheres. 

Within the EMTO formalism, the one-electron states are calculated exactly for the 

OOMT potentials. As an output of the EMTO calculations, one can determine self-

consistent Green‟s function of the system and the complete, non-spherically symmetric 

charge density. Finally, the total energy is calculated using the full charge-density 

technique [22]. We treat, as the valence states, the 7s, 6p, 6d, and 5f states for U, Np, Pu, 

and Am and 5s, 4p, and 4d states for Mo. The corresponding Kohn-Sham orbitals are 

expanded in terms of spdf exact muffin-tin orbitals, i.e. we adopt an orbital momentum 

cutoff, lmax = 3. The EMTO orbitals, in turn, consist of the spdf partial waves (solutions of 

the radial Schrödinger equation for the spherical OOMT potential wells) and the spdf 

screened spherical waves (solutions of the Helmholtz equation for the OOMT muffin-tin 

zero potential). The completeness of the muffin-tin basis was discussed in details in Ref. 

[21] and it was shown that for metals crystallizing in close-packed lattices lmax = 3 (spdf 

orbitals) leads to the well converged charge density and total energy. For the electron 

exchange and correlation energy functional, the generalized gradient approximation 
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(GGA) is considered [23]. Integration over the Brillouin zone is performed using the 

special k-point technique [24] with 506 points in the irreducible wedge of the zone for the 

bcc structure. The moments of the density of states, needed for the kinetic energy and 

valence charge density, are calculated by integrating the Green‟s function over a complex 

energy contour (with 2.5-3.0 Ry diameter) using a Gaussian integration technique with 

30-40 points on a semi-circle enclosing the occupied states. In the case of the 

implementation of the FR-EMTO formalism, the spin-obit coupling is included through 

the four-component Dirac equation [25]. 

In order to treat compositional disorder the EMTO method is combined with the 

coherent potential approximation (CPA) [26, 27]. The ground-state properties of the 

chemically random bcc-based ( ) X-Mo (X = U, Np, Pu, Am) alloys are obtained from 

EMTO-CPA calculations that include the Coulomb screening potential and energy [28-

30]. The screening constants are determined from supercell calculations using the locally 

self-consistent Green‟s-function (LSGF) method [31] for a 1024 atoms supercell that 

models the random equiatomic alloys. The  and  screening constants (see Refs. [28, 

29] for details) are found to be 0.725 and 1.088, 0.726 and 1.083, 0.655 and 0.953, and 

0.585 and 0.802, for the bcc U-Mo, Np-Mo, Pu-Mo, and Am-Mo alloys, respectively.  

The Pu-Mo and Am-Mo alloys have been modeled within the disordered local 

moment (DLM) approximation that leads to a paramagnetic solution, see Refs. [32, 33] 

for details. The equilibrium atomic density of these alloys is obtained from a Murnaghan 

fit to the total energy versus lattice constant curve [34]. 

For the elemental metals, the most accurate and fully relativistic calculations are 

performed using a full-potential (no geometrical approximations) approach, where the 
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relativistic effects, including spin-orbit coupling, are accounted for through the 

conventional perturbative scheme [35] that has the accuracy of solving the Dirac equation 

for the light actinides [36]. Although unable to model disorder in the CPA sense it 

provides important information for the metals, and also serves to confirm the CPA 

calculations mentioned above. For this purpose we use a version of the FPLMTO [37], in 

which the “full potential” in FPLMTO refers to the use of non-spherical contributions to 

the electron charge density and potential. This is accomplished by expanding the charge 

density and potential in cubic harmonics inside non-overlapping muffin-tin spheres and 

in a Fourier series in the interstitial region. We use two energy tails associated with each 

basis orbital, and for the semi-core 6s and 6p states and valence states (7s, 7p, 6d, and 5f) 

these pairs are different. With this „double basis‟ approach we use a total of six energy 

tail parameters and a total of 12 basis functions per atom. Spherical harmonic expansions 

are carried out up to lmax= 6 for the basis, potential, and charge density. As in the case of 

the EMTO method, GGA is used for the electron exchange-correlation approximation. 

Finally, a special quasi-random structure (SQS) method, utilizing a 16-atom supercell 

(different for 25 at. % and 75 at. % concentration versus the 50 at. % concentration) was 

used to treat the compositional disorder within the FPLMTO formalism [38], so the 

results could be compared with those obtained with EMTO-CPA. Spin polarization for 

the Pu- and Am-containing alloys was arranged in an antiferromagnetic fashion [39] with 

neighboring atoms having anti-parallel spins. This is different from the spin configuration 

used in the EMTO calculations where the spins are randomly aligned. 

The two methods (EMTO-CPA and FPLMTO-SQS) generally produce similar 

quantitative results although some numerical differences are expected due to their 
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different electronic-structure implementations. Beyond that, the alloy approximation as 

well as the magnetic treatment (Pu and Am containing alloys) is different between the 

two approaches. Because of the many contrasting details it is difficult to relate any 

discrepancy of the results to particular approximations. It suffices to say that FPLMTO is 

a more accurate electronic-structure method while CPA is a more robust approximation 

for the alloy system. 

 

3. Ground-state properties of the bcc U-Mo, Np-Mo, Pu-Mo and Am-Mo solid 

solutions 

 Fig. 1a shows results of EMTO-CPA calculations of the heat of formation of the 

-U-Mo solid solutions at T = 0 K [2]. The calculated heat of formation is positive in a 

broad region of the composition interval but changes its sign from positive to negative 

when uranium composition exceeds ~80 at. %. For comparison, we also show the heats 

of formation for the U75Mo25, U50Mo50, and U25Mo75 bcc alloys [2], calculated within the 

FPLMTO-SQS technique that agrees relatively well with EMTO-CPA results. This plot 

also shows CAPHAD assessment [40] of the heat of formation of the -U-Mo solid 

solutions at T = 100 K with a distinctive change of its sign from positive to negative 

around 80 at. % of uranium. 

 Fig. 1b shows results of EMTO-CPA and FPLMTO-SQS calculations of the heat 

of formation of the -Np-Mo solid solutions at T = 0 K. In contrast to the -U-Mo solid 

solution, where the heat of formation changes its sign from positive to negative on the U-

rich side of the composition interval, this thermodynamic characteristic, calculated for the 

-Np-Mo solid solutions with both EMTO-CPA and FPLMTO-SQS methods, is positive 
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thus indicating a tendency towards phase separation. Notice that the heats of formation 

calculated with both EMTO-CPA and FPLMTO-SQS methods show an identical 

asymmetry with respect to the equiatomic composition, although for the Np75Mo25 and 

Np50Mo50 bcc alloys the FPLMTO-SQS calculations give some higher values of the heat 

of formation than the one calculated within EMTO-CPA formalism.  

 Fig. 1c presents results of EMTO-CPA and FPLMTO-SQS calculations of the 

heat of formation of the -Pu-Mo solid solutions at T = 0 K. As in the case of the -Np-

Mo solid solutions, the heat of formation of the -Pu-Mo solid solutions is positive 

through the entire composition interval, and both EMTO-CPA and FPLMTO-SQS results 

show an identical asymmetry with respect to the equiatomic composition, although for 

this system the FPLMTO-SQS calculations give some lower values of the heat of 

formation than one calculated within EMTO-CPA formalism. 

 Fig. 1d depicts results of EMTO-CPA and FPLMTO-SQS calculations of the heat 

of formation of the -Am-Mo solid solutions at T = 0 K. There is a very good agreement 

between the results obtained from both theoretical methods with identical asymmetry 

with respect to the equiatomic composition. Generally speaking, Figs. 1a–d show a 

reasonable agreement between the two methodologies that are quite different both in 

regards to details of the electronic-structure codes but also the model of disorder (CPA 

and SQS). The level of consistency suggests a robustness of the density-functional theory 

approach for modeling these bcc-based X-Mo solid solutions. 

Fig. 2 shows results of EMTO-CPA and FPLMTO-SQS calculations of the 

equilibrium atomic volume of the -X-Mo alloys at T = 0 K. For the -U-Mo alloys (Fig. 

2a), EMTO-CPA results, already presented in Ref. [2], show a slight positive deviation 
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from Vegard‟s law with a visible inflection around U2Mo compound stoichiometry. As 

one can see from this figure, the positive deviation from Vegard‟s law for this system 

also follows from the FPLMTO-SQS model. 

There is a significant positive deviation from Vegard‟s law for the -Np-Mo solid 

solution (Fig. 2b) that agrees well with the positive formation energy of these alloys. 

However, as was already pointed out in the previous paper [19], one should notice the 

calculated (EMTO-CPA and FPLMTO-SQS) value of the equilibrium volume of pure -

Np is significantly smaller than observed experimentally [41]. The inaccuracy of the 

theoretical volume of -Np is consistent with previous calculations [42] and due to 

temperature effects of the actinide bcc phase that are difficult to model [43].  

Finally, there is a negative deviation from Vegard‟s law for the equilibrium 

atomic volume calculated by both EMTO-CPA and FPLMTO-SQS methods for the -Pu-

Mo and -Am-Mo alloys, shown in Fig. 2c and Fig. 2d, respectively, which, at first sight, 

contradicts the significant positive heat of formation associated with these systems. In the 

next section we will give our explanation of this unusual behavior of the equilibrium 

volume. We shall mention that our previous calculations also revealed a significant 

negative deviation from Vegard‟s law for the equilibrium atomic volume for the -U-Am 

and -Am-Zr alloys shown in Fig. 3a and Fig. 3b, respectively, even though the 

calculated positive heats of formation within the whole composition interval for these 

alloys were recently reported [11]. For example, EMTO-CPA calculations revealed that 

the heat of formation is equal to + 20.54 kJ/mole and + 8.86 kJ/mole for -U50Am50, and 

-Am50Zr50 alloys, respectively [11]. 
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4. Discussion 

Within the EMTO formalism [20, 21], the total-energy, Etot, can be expressed as 

the sum of two contributions: Etot = Eb + EM, where Eb consists of all “local” (band-

structure) contributions, Eb = Es + Eintra + Exc, including the kinetic energy of the non-

interacting electron gas, Es, the intra-cell electrostatic energy, Eintra (which is due to the 

electron-electron and electron-ion Coulomb interactions), and the exchange and 

correlation energy, Exc. The remaining contribution, EM, is the inter-cell Madelung 

energy.  

In Table 1 we compare the results of our calculated heat of formation, Etot, for 

bcc X50Mo50 alloys. This Table also lists the energy contributions, Eb, and EM, the 

equilibrium Wigner-Seitz (WS) radius, SWS, (defined by equating the WS volume with the 

atomic volume), the screening constants,  and , and the charge transfer on the Mo 

atoms, QMo, that is calculated by the LSGF method [31] for a 1024 atoms supercell that 

models the random equiatomic alloy. According to Ref. [29], the Madelung energy 

contribution to the heat of formation of a disordered AcB1-c alloy is proportional to 

(

2
ΔQ

- c 1 c
S

w s

), where c is the concentration of the component ‘A’. The 

Madelung energy contribution to the heat of formation of a disordered alloy is always 

negative and, as one can see from Table 1, the absolute value of this contribution for the 

U50Mo50 alloy is ~1.26, ~2.62, and ~5.13 larger than for the Np50Mo50, Pu50Mo50, and 

Am50Mo50 alloys, respectively. Thus, as the value of the charge transfer on the Mo atoms, 

QMo, decreases along the actinide row U Np Pu Am, the absolute value of the 

negative Madelung energy contribution to the total heat of formation of the 
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corresponding alloy decreases causing increase of the total heat of formation that is 

actually found by present calculations for the sequence of the U-Mo Np-Mo Pu-

Mo Am-Mo alloys. Even the band-structure contribution to the total heat of formation, 

EB, is positive and ~1.15 and ~1.61 larger for the U50Mo50 alloy than for the Np50Mo50 

and Pu50Mo50 alloy, respectively, the negative Madelung energy contribution prevails in 

the case of the U50Mo50 alloy resulting in a drop of the heat of formation of this alloy by a 

factor of ~1.88 and ~3.54 in comparison with the Np50Mo50 and Pu50Mo50 alloy, 

respectively. Comparing the positive band structure contribution for the U50Mo50 and 

Am50Mo50 alloys, one can found that this contribution is only ~1.16 larger for the 

U50Mo50 alloy than for the Am50Mo50 alloy. The large negative Madelung energy 

contribution in the case of the U50Mo50 alloy prevails and results in a drop of the heat of 

formation for this alloy by a factor of ~8.90 in comparison with the Am50Mo50 alloy. 

In Fig. 4 we compared the results of EMTO-CPA calculations of the heat of 

formation of the bcc X-Mo solid solutions. The insert shows the charge transfer on the 

Mo atoms, QMo, for the equiatomic alloy listed in Table 1. The system with the largest 

(smallest) charge transfer, U-Mo (Am-Mo), has the smallest (largest) heat of formation. 

As we already mentioned in Section 2, the paramagnetic Pu-Mo and Am-Mo 

alloys have been modeled within the disordered local moment (DLM) approximation. 

Within the DLM approximation, a paramagnetic binary AcB(1-c) alloy is modeled by the 

random quaternary (A↑-A↓)c(B↑-B↓)(1-c) alloy with equal amount of spin up (↑) and spin 

down (↓) atoms [44]. In the case of the paramagnetic Pu-Mo and Am-Mo alloys, modeled 

within the DLM formalism, only Pu (Am) atoms possess the magnetic moment while the 

magnetic moment of Mo atoms is always equal to zero. That is why DLM description of 
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the Pu-Mo and Am-Mo alloys is simplified by the modeling of (Pu↑-Pu↓)c(Mo)(1-c) and 

(Am↑-Am↓)c(Mo)(1-c) alloy spin configurations, respectively. 

Figs. 5a and 5b show the calculated (EMTO-CPA) concentration dependence of 

the absolute magnetic spin moment (no orbital component) of the bcc paramagnetic (Pu↑-

Pu↓)c(Mo)(1-c) and (Am↑-Am↓)c(Mo)(1-c) alloys, respectively. It deviates negatively from 

a linear behavior for the -Pu-Mo system when concentration of Mo exceeds ~15 at. %. 

For the -Am-Mo system this property displays the same behavior within the whole 

compositional range.  

A similar tendency (negative deviation of the calculated absolute spin moment 

from linear behavior) was discovered in the DLM description of the paramagnetic Fe-Cr 

alloys [45, 46]. The DLM model also revealed a significant negative deviation of the 

equilibrium atomic volume from the Vegard‟s law in this system (e.g., see Ref. [47], Fig. 

1a) that is accompanied with a positive heat of formation [45-47]. The believed reason is 

that the equilibrium volume is sensitive to magnetism, which gives rise to this 

counterintuitive behavior. A net magnetic itinerant spin moment (in any configuration) 

implies spin polarization of the responsible bands (here 5f bands). Generally, this can 

lead to a reduction of bonding electrons (thus expanding the volume) or even disrupt the 

systematics of the crystal structures, as in the case of the magnetic 3d transition metals 

[48]. This then explains why the calculated equilibrium volume deviates from a linear 

behavior (the Vegard‟s law) with alloying in a similar fashion as the absolute magnetic 

spin moment does. We thus conclude that the negative deviation of the absolute magnetic 

spin moment from linear behavior in the DLM paramagnetic binary AcB(1-c) alloys causes 

the negative deviation of the equilibrium atomic volume from the Vegard‟s law in these 
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alloys even if the heat of formation of these alloys remains positive. This hypothesis 

accounts for the negative deviation of the equilibrium atomic volume from the Vegard‟s 

law for the DLM -Pu-Mo and -Am-Mo alloys shown in Figs. 2c and 2d, respectively, 

although both alloys have a positive heat of formation. Two other alloys studied in this 

paper, U-Mo and Np-Mo, are non-magnetic and their positive heat of formation is 

accompanied with the positive deviation of the equilibrium volume from the Vegard‟s 

law in these alloys – a scenario shown in most textbooks.  

In order to support our hypothesis that magnetism plays a decisive role in 

determining the character of the concentration behavior of the equilibrium atomic volume 

of paramagnetic alloys, we plot, in Fig. 5c, the concentration dependence of the 

calculated (EMTO-CPA) magnitude of the spin moment of the bcc paramagnetic Pu-Am 

system that is represented within DLM formalism by (Pu↑-Pu↓)c(Am↑-Am↓)(1-c) spin 

configuration. In the case of paramagnetic -Pu-Am alloys both Pu and Am atoms 

possess a magnetic moment. The calculated absolute magnetic moment of the -Pu-Am 

alloys shows a positive deviation from linear behavior when the concentration of Am 

exceeds ~15 at. % and this behavior drives the positive deviation of the equilibrium 

atomic volume from the Vegard‟s law in these alloys that is shown in Fig. 6. One should 

mention that in addition to results of the EMTO-CPA calculations, already presented in 

Ref. [19], Fig. 6 also shows results of FPLMTO-SQS calculations for this system that 

also indicate a positive deviation of the equilibrium atomic volume from the Vegard‟s 

law. The positive deviation of the equilibrium atomic volume from the Vegard‟s law in 

the DLM paramagnetic -PucAm(1-c) alloys is accompanied by a positive heat of 

formation through the entire composition interval [19, 49]. 
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5. Conclusion 

 In the present paper ab initio results of the ground-state properties are obtained 

for the bcc Np-Mo, Pu-Mo, and Am-Mo alloys to understand the effectiveness of first-

principles methods in describing actinide alloys. The reason for an increase of the heat of 

formation along the sequence of the U-Mo Np-Mo Pu-Mo Am-Mo alloys is 

explained. The physical origin of the deviation of the equilibrium volume from the 

Vegard‟s law in paramagnetic alloys is discussed. Together with our ab initio results 

obtained previously for U-Mo, U-Am, Pu-U, Pu-Np, and Pu-Am alloys [2, 9, 11, 19, 49] 

these new results will be used to build a thermodynamic database for U-TRU-Mo alloys 

that are considered to be very promising fuels for fast breeder reactors [4, 50-56].  
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Table 1. 

Equilibrium Wigner-Seitz radius, SWS, (in a.u., 1 a.u.= 0.0529 nm), screening constants,  

and , charge transfer on the Mo atoms, QMo, contributions, Eb and EM, to the heat of 

formation, Etot, (in kJ/mole) of the bcc U50Mo50, Np50Mo50, Pu50Mo50, and Am50Mo50 

alloys. 

Alloy SWS QMo Eb EM Etot 

U50Mo50 3.1274 0.725 1.088 0.440 74.5648 - 68.8681 5.6967 

Np50Mo50 3.0629 0.726 1.083 0.380 65.0899 - 54.4927 10.5972 

Pu50Mo50 3.0921 0.655 0.953 0.318 46.4297 - 26.2651 20.1646 

Am50Mo50 3.1725 0.585 0.802 0.280 64.1060 -13. 4138 50.6922 
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Captions. 

Figure 1. Heat of formation (in kJ/mole) versus composition for the -U-Mo (a), -Np-

Mo (b), -Pu-Mo (c), and -Am-Mo (d) alloys (T = 0 K). 

Figure 2. Atomic volume (in nm
3
) versus composition for the -U-Mo (a), -Np-Mo (b), 

-Pu-Mo (c), and -Am-Mo (d) alloys (T = 0 K).  

Figure 3.  Atomic volume (in nm
3
) versus composition for the -U-Am (a) and -Am-Zr 

(b) alloys (T = 0 K).  

Figure 4. Heat of formation (in kJ/mole) versus composition for the bcc U-Mo, Np-Mo, 

Pu-Mo, and Am-Mo alloys (T = 0 K). The insert shows the charge transfer on the Mo 

atoms calculated by the LSGF method [31] for a supercell that models the random 

equiatomic alloy. 

Figure 5. Absolute magnetic moment (in B/atom) versus composition for the -Pu-Mo 

(a), -Am-Mo (b), and -Pu-Am (c) alloys (T = 0 K). 

Figure 6. Atomic volume (in nm
3
) versus composition for the -Pu-Am alloys. 
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Figures. 
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Figure 1b. 
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Figure 1c. 
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Figure 1d. 
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Figure 2a. 
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Figure 2b. 
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Figure 2c. 
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Figure 2d. 
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Figure 3a. 
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Figure 3b. 
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Figure 4. 
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Figure 5a. 
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Figure 5b. 
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Figure 5c. 
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Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


